Calculation of photoelectron spectra within the time-dependent configuration-interaction singles scheme

نویسندگان

  • Antonia Karamatskou
  • Stefan Pabst
  • Yi-Jen Chen
  • Robin Santra
چکیده

We present an extension of the time-dependent configuration-interaction singles (TDCIS) method to the computation of the electron kinetic-energy spectrum in photoionization processes. Especially for strong and long ionizing light pulses, the detection of the photoelectron poses a computational challenge because propagating the outgoing photoelectron wave packet requires large grid sizes. Two different methods that allow for the extraction of the asymptotic photoelectron momentum are compared regarding their methodological and computational performance. The first method follows the scheme of Tong et al. [X. M. Tong, K. Hino, and N. Toshima, Phys. Rev. A 74, 031405(R) (2006)], where the photoelectron wave function is absorbed by a real splitting function. The second method following that presented by Tao and Scrinzi [L. Tao and A. Scrinzi, New J. Phys. 14, 013021 (2012)], measures the flux of the electron wave packet through a surface at a fixed radius. With both methods the full angleand energy-resolved photoelectron spectrum is obtained. Combined with the TDCIS scheme, it is possible to analyze the dynamics of the outgoing electron in a channel-resolved way and, additionally, to study the dynamics of the bound electrons in the parent ion. As an application, one-photon and above-threshold ionization of argon following strong XUV irradiation are studied via energyand angle-resolved photoelectron spectra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory.

We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additiona...

متن کامل

Communication: Adjusting charge transfer state energies for configuration interaction singles: without any parameterization and with minimal cost.

In a recent article, we showed that configuration interaction singles (CIS) has a systematic bias against charge-transfer (CT) states: CT vertical excitation energies are consistently too high (by 1-2 eV) as compared with non-CT energies [J. E. Subotnik, J. Chem. Phys. 137, 071104 (2011)]. We now show that this CIS error can be corrected approximately by performing a single Newton-Raphson step ...

متن کامل

Using the ONIOM hybrid method to apply equation of motion CCSD to larger systems: benchmarking and comparison with time-dependent density functional theory, configuration interaction singles, and time-dependent Hartree-Fock.

Equation of motion coupled-cluster singles and doubles (EOM-CCSD) is one of the most accurate computational methods for the description of one-electron vertical transitions. However, its O(N(6)) scaling, where N is the number of basis functions, often makes the study of molecules larger than 10-15 heavy atoms prohibitive. In this work we investigate how accurately less expensive methods can app...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014